

MATISSE Consortium

OCA-UNS-CNRS, Nice, France MPIA, Heidelberg, Germany MPIfR, Bonn, Germany NOVA, The Netherlands ITAP, Kiel University, Germany Vienna University, Vienna, Austria

Very Large Telescope

Inspection and Test Report Detector

Doc. No.: VLT-TRE-MAT-15860-9133

Issue: 2.1

Date: 18.07.2017

Author(s):	U. Beckmann	18.07.2017	
	Name	Date	Noto Bochmany
Project Manager:	P. Antonelli	18.07.2017	te
	Name	Date	Signature
Principal Investigator:	B. Lopez	18.07.2017	17
	Name	Date	Signature

* Co-authors: Matthias Heininger

CHANGE RECORD

Doc. Issue

Date Page

ISSUE	DATE	SECTION/PAGE	REASON/INITIATION/DOCUMENT/REMARKS
		AFFECTED	
1	10.11.2016	All	First issue
2	24.05.2017	3,4	Extended and updated
2.1	18.07.2017	3.2 3.5, 3.11	Images of all four bad pixel maps included, plot
			of HAWAII-2RG non-linearity added

Doc. Issue Date Page

TABLE OF CONTENTS

1SCOPE, APPLICABLE AND REFERENCE DOCUMENTS	5
1.1Scope	5
1.2Applicable Documents	5
1.3Reference Documents	5
2TEST RESULTS OF THE L/M-BAND AND N-BAND DETECTORS	6
3TESTS	8
3.1Data sheet and design decisions	8
3.2HAWAII-2RG DETECTOR CHARACTERIZATION USING THE SLOW PIXEL CLOCK	9
3.3HAWAII-2RG DETECTOR CHARACTERIZATION USING THE FAST PIXEL CLOCK	11
3.4AQUARIUS DETECTOR CHARACTERIZATION USING THE LOW GAIN MODE	13
3.5 AQUARIUS DETECTOR CHARACTERIZATION USING THE HIGH GAIN MODE	15
3.6REMANENCE MEASUREMENTS	17
3.7Crosstalk between pixels	18
3.8Temporal stability	20
3.9CORRELATED NOISE	20
3.10Stray light	21
3.11Nonlinearity	22
3.12DETECTOR VIBRATION	24
APPENDIX: ABBREVIATIONS AND ACRONYMS	27

List of Figures

Illustration 2: HAWEAII-2RG bad pixel map, valid for a 2 MHz pixel clock (SCI-FAST-SPEED)12 Illustration 3: Aquarius bad pixel map, valid for low gain (SCI-LOW-GAIN)	Illustration 1: HAWAII-2RG bad pixel map, valid for a 100 kHz pixel clock (SCI-SLOW-SPEED).	10
Illustration 3: Aquarius bad pixel map, valid for low gain (SCI-LOW-GAIN).14Illustration 4: Aquarius bad pixel map, valid for high gain (SCI-HIGH-GAIN).16Illustration 5: L-Band, HAWAII-2RG, Remanence.17Illustration 6: N-Band, Aquarius, Remanence.17Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.19Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 2: HAWEAII-2RG bad pixel map, valid for a 2 MHz pixel clock (SCI-FAST-SPEED)	12
Illustration 4: Aquarius bad pixel map, valid for high gain (SCI-HIGH-GAIN).16Illustration 5: L-Band, HAWAII-2RG, Remanence.17Illustration 6: N-Band, Aquarius, Remanence.17Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.19Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 3: Aquarius bad pixel map, valid for low gain (SCI-LOW-GAIN)	14
Illustration 5: L-Band, HAWAII-2RG, Remanence.17Illustration 6: N-Band, Aquarius, Remanence.17Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.19Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 4: Aquarius bad pixel map, valid for high gain (SCI-HIGH-GAIN)	16
Illustration 6: N-Band, Aquarius, Remanence.17Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.19Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 5: L-Band, HAWAII-2RG, Remanence	17
Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.19Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 6: N-Band, Aquarius, Remanence	17
Illustration 8: Aquarius pixel crosstalk, pixel clock dependency.20Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock	19
Illustration 9: Aquarius stray light coming from cold optics.21Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 8: Aquarius pixel crosstalk, pixel clock dependency	20
Illustration 10: Aquarius stray light depending from DIT.22Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock.23Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 9: Aquarius stray light coming from cold optics	21
Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock	Illustration 10: Aquarius stray light depending from DIT	22
Illustration 12: Aquarius nonlinearity for several DIT.23Illustration 13: Aquarius, slit for vibration measurements.24Illustration 14: Aquarius, vibration measurements via temporal power spectra.26	Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock	23
Illustration 13: Aquarius, slit for vibration measurements	Illustration 12: Aquarius nonlinearity for several DIT	23
Illustration 14: Aquarius, vibration measurements via temporal power spectra	Illustration 13: Aquarius, slit for vibration measurements	24
	Illustration 14: Aquarius, vibration measurements via temporal power spectra	26

List of Tables

Table 1: Detector Requirements, (*) values taken from data sheets, (**) calculated, (***) by design	8
Table 2: Aquarius vibration measurements at left edge of slit image	24
Table 3: Aquarius detector vibration limits (valid for a pixel intensity of 15000 DU)	25

1 SCOPE, APPLICABLE AND REFERENCE DOCUMENTS

Doc.

Issue

Date

Page

1.1 Scope

As described in the MAIT plan [AD3], the test and verification program of MATISSE results in the PAE of MATISSE. However, sub-system verifications reduce risk and improve knowledge of the system prior to the full systems verification.

This document describes the tests and verification of the detector (DET) sub-systems. It first gives the test results on the global sub-systems, then of the modules, and finally checks the component compliance.

The test results show that the DET complies with the low level specifications and conduct to its acceptance.

The end of the test and verification program of the WOP is marked by the MATISSE Readiness Review MRR9.

1.2 Applicable Documents

The following Applicable Documents (AD) of the exact issue form part of the present document.

AD	Doc Nr	Doc Title	Issue	Date
Nr				
AD1	VLT-SPE-MAT-15860-9004	MATISSE Instrument specifications	3	19/10/2011
AD2	VLT-TRE-MAT-15860-9101	MATISSE Design and Performance Report: Optics (Warm Optics)	5	10/11/2016
AD3	VLT-PLA-MAT-15860-9050	MATISSE MAIT	6	31/07/2012
AD4	VLT-MAN-MAT-15860-9xxx	MATISSE Optical Alignment Manual		10/11/2016
AD5	VLT-ICD-MAT-15860-9005	MATISSE Internal Interface Document	5	31/07/2012
AD 6	MAT-SYS-VRM001	Verification matrix		
AD 7	MATISSE-MPIA-TN-023	Cryostat temperature characteristics	1.1	17/05/2017

1.3 Reference Documents

The following Reference Documents (RD) contains information relevant to the present document.

RD	Doc Nr	Doc Title	Issue	Date
Nr				
RD1	MATISSE-OCA-TN-007	Manufacturing report of the optical components of the Warm Optics	1	10/11/2016
RD2	MATISSE-OCA-TN-005	CMO: Angular stability	1	12/06/2013
RD3	MATISSE-OCA-TN-006	Targets: positioning measurements	1	29/08/2013
RD4	MATISSE-OCA-TN-008	WOP modules integration	1	10/11/2016
RD5	VLT-TRE-MAT-15860-9xxx	MATISSE Instrument and Performance Report	1	10/11/2016

Report Detector

2 Test results of the L/M-Band and N-Band Detectors

Doc.

Issue

Date

Page

The following table lists all detector related requirements from the verification matrix. Some requirements are fulfilled by the detector itself or by the MATISSE hardware and software (design). Most of the requirements were tested using data taken with the MATISSE instrument.

Name	ID	Verification /Method	Detector, Configuration	Desired value	Actual value
Crosstalk between pixels	6.08	T/T	L-Band, spatial	< 2.5 %	1.3 % (100 kHz), 3.4 % (2 MHz)
			L-Band, spectral	< 5 %	2.8 % (100 kHz), 1.8 % (2 MHz)
			N-Band, spatial	< 2.5 %	8.1 % (high gain, 2.4 MHz), 3 % (high gain, 1.7 MHz), 9.8 % (low gain, 2.4 MHz)
			N-Band, spectral	< 5 %	4.8 % (high gain, 2.4 MHz), 6.2 % (low gain, 2.4 MHz)
Detector vibration,	6.09	T/A	L-Band	< 1.8 µm PTV	
spatial direction			N-Band	< 3.5 µm PTV	< 1.7 µm @ 1 - 100 Hz
Detector window	8.01	T/D	L-Band	$\begin{array}{c} P \ge 75 \text{ px}, I \ge 450 \text{ px}, \\ @ 5 \ \mu\text{m} \end{array}$	Yes (***)
			N-Band	$\begin{array}{c} P \geq 78 \text{ px, } I \geq 468 \text{ px,} \\ @ 13 \mu\text{m} \end{array}$	Yes (***)
OPD Modulation	9.02	T/D		sync accuracy < 1 ms	Yes (***)
Detector	10.27	T/T	L-Band	40 K, stability < 0.1 K	40 K, < 0.05 K
temperature	10.28		N-Band	610 K, stability < 0.1 K	9 K, < 0.001 K
Preamp temperature	10.29	T/T	L-Band	40 - 120 K	60 - 80 K
Dark current	current 11.07 T ght)	T/T	L-Band, 100 kHz	$< \text{RON}^2 (10^2)$	$1 \text{ e-/s} \rightarrow 100 \text{ s}$
(stray light)			L-Band, 2 MHz	$< \text{RON}^{2} (63^{2})$	$1 \text{ e-/s} \rightarrow 3200 \text{ s}$
			N-Band, low gain	$< \text{RON}^2 (1800^2)$	13000 e-/s → 250 s
			N-Band, high gain	$< \text{RON}^2 (210^2)$	$13000 \text{ e-/s} \rightarrow 3 \text{ s}$
Detector QE	12.01	T/D	L-Band	> 50 %	> 70 % (*)
	12.02		N-Band	> 50 %	> 50 % (*)
Readout noise	12.03	T/T	L-Band, 100 kHz	< 15 e-	10.1 e-
			L-Band, 2 MHz		53.5 e-
	12.04		N-Band, low gain		1800 e-
			N-Band, high gain	< 300 e-	210 e-
Spectral Range	12.05	T/D	L-Band	2.8 – 5 μm	2.8 - 5 μm (*)
	12.06		N-Band	8 - 13 μm	5 – 25 µm (*)
Detector	12.07	T/D	L-Band, without FT	30 – 75 ms	Yes (***)
integration time			L-Band, with FT	Up to 2 min	Yes (***)
	12.08	T/D	N-Band, low gain	20 – 30 ms	> 50 µs, Yes (***)
			N-Band, high gain		> 50 µs, Yes (***)

Name	ID	Verification /Method	Detector, Configuration	Desired value	Actual value
Image configuration	12.09	T/D		1-5 images	Yes (***)
Readout direction	12.10	D/D		fast = spatial	Yes (***)
Image size	12.11	T/D		different sizes depending on the spectral resolution	Yes (***)
Array size	12.12	D/D	L-Band	2048x2048	2048x2048 (*)
			N-Band	1024x1024	1024x1024 (*)
Pixel size	12.13	D/D	L-Band	18 μm square	18 μm square (*)
			N-Band	30 µm square	30 µm square (*)
Full well capacity	12.14	T/A	L-band, 100 kHz	≥ 100000 e-	120000 e-
			L-Band, 2 MHz		130000 e-
	12.15		N-band, low gain	≥ 6000000 e-	9000000 e-
			N-band, high gain	≥ 600000 e-	> 960000 e-
Linearity,	12.16	T/T	L-Band, 100 kHz	> 99 %	96000 e-
compensated			L-Band, 2 MHz		100000 e-
	12.17		N-Band, low gain		6000000 e-
			N-Band, high gain		960000 e-
Dark current	12.18	8 T/T	L-Band, 100 kHz	< 5 e-/s	< 1 e- @ 40 K (measured)
			L-Band, 2 MHz		< 1 e- @ 40 K (measured)
	12.19		N-Band	< 1000 e-/s	3600 e- (measured) 200 e- @ 8.5 K (datasheet)
Remanence	12.24	T/T	L-Band	< 2 % (4τ)	$\tau = 2$ ms, a 8 ms delay needed to reach the specification
	12.25		N-Band		$\tau = 5 \text{ ms},$ a 20 ms delay needed to reach the specification
Conversion Gain	12.26	T/T+A	L-Band, 100 kHz		2.73 e-/DU
			L-Band, 2 MHz		2.60 e-/DU
	12.27		N-Band, low gain		20 e-/DU (**)
			N-Band, high gain		190 e-/DU (**)
Electronic Gain	12.28	T/D	L-Band	Amplifier gain from	8
	12.29		N-Band	ADC	3
Correlated Noise	12.30	T/T	L-Band	Below RON	no correlated noise detected in power spectra
	12.31		N-Band		no correlated noise detected in power spectra
ELFN	12.32	T/-	L-Band	Below photon noise when	measurements suffered from
	12.33		N-Band	averaged over 1 s	detector non linearity
Preamplifier	12.34	T/T+A	L-Band	Below RON	< 7 e- (1/2 of the total RON)

	MATISSE	Doc.	VLT-TRE-MAT-15860-9133	
Na		Issue	2.1	
MATISSE	Inspection and Test	Date	18.07.2017	
	Report Detector	Page	8 of 27	

Name	ID	Verification /Method	Detector, Configuration	Desired value	Actual value
Noise	12.35		N-Band		100 e- (measurements without photon sensitivity)
Fixed pattern	12.36	T/T	L-Band		75 s (Allan variance)
noise temporal stability	12.37		N-Band		50 s (Allan variance)
Bad pixel map	12.38	T/T	L-Band, 100 kHz	No clusters of more than 2 pixel in spatial direction	3 large loose clusters, 67 compact clusters (3 or more bad pixels), 253 doublets
			L-Band, 2 MHz		3 large loose clusters, 275 compact clusters (3 or more bad pixels), 3449 doublets
	12.39		N-Band, low gain		29 compact clusters (3 or more bad pixels), 19 doublets
			N-Band, high gain		67 compact clusters (3 or more bad pixels), 38 doublets
Masked area	12.40	T/T	L-Band	32x128 pixels	left=80, right=80, bottom=30, top=40
			N-Band	32x32 pixels	left=32, right=32, bottom=32, top=31

Table 1: Detector Requirements, (*) values taken from data sheets, (**) calculated, (***) by design

3 Tests

3.1 Data sheet and design decisions

Some values of both detectors are given in the data sheets from Teledyne/Raytheon:

•	Detector QE:	
	• L-Band (12.01):	>70 % between 0.8 and 4.4 μm
	• N-Band (12.02):	> 50 % between 8.9 and 25 μ m
•	Spectral Range:	
	• L-Band (12.05):	2.8 - 5 μm
	• N-Band (12.06):	3 – 25 µm
•	Readout direction (12.10):	fast = spatial (horizontal)
•	Array size (12.12):	
	• L-Band:	248x2048 pixels
	• N-Band:	1024x1024 pixels
•	Pixel size (12.13):	
	• L-Band:	18 μm square
	• N-Band:	30 μm square

Some requirements were fulfilled by design decisions (hardware and software):

• Detector window (8.01): The DCS supports the required sub-window setup

Doc.

Issue

Date

Page

- OPD-Modulation (9.02): The OPD modulator and detectors are triggered via TIM boards
- Image configuration (12.09): The DCS supports the required sub-window setup
- Image size (12.11): The DCS supports the required sub-window setup

3.2 HAWAII-2RG Detector characterization using the slow pixel clock

A set of cold dark and flat field exposures was taken with the *MATISSE_gen_cal_det_L_SLOW* OB. The associated MATISSE DRS plug-in *mat_cal_det* was used to calculate the bad pixel map, flat field map and nonlinearity map for the HAWAII-2RG detector at slow speed (100 kHz pixel clock). In addition some characteristic properties were calculated from the plug-in:

	~	
٠	Conversion factor (12.26):	2.73 e-/DU
٠	Readout noise (12.03):	10.1 e-
٠	Bad pixels:	8696 bad pixels of 2048x2048 pixels
٠	MINDIT:	1.382 s for the whole detector
•	Full well capacity (12.14):	> 120000 e-
•	Nonlinearity compensation (12.16):	up to 96000 e- possible, max residual 1 %
•	Dark current (12.18):	0.022 e-/s (data sheet), < 1 e-/s (estimated, include stray
	light)	
٠	Masked area (12.40):	left=80, right=80, bottom=30, top=40
T 1		

The HAWAII-2RG detector shows 67 compact clusters of at least 3 bad pixels and three loose clusters of bad pixels:

- a large loose cluster at (294,1907), 32 pixel diameter, 167 bad pixels
- a large loose cluster at (327,1092), 26 pixel diameter, 123 bad pixels
- a large loose cluster at (1634,1224), 50 pixels diameter, 127 bad pixels
- 253 clusters of 2 bad pixels
- 25 clusters of 3 bad pixels
- 12 cluster of 4 bad pixels
- 7 clusters of 5 bad pixels
- 4 clusters of 6 bad pixels
- 4 clusters of 7 bad pixels
- 3 clusters of 8 bad pixels
- 2 clusters of 9 bad pixels
- 2 clusters of 11 bad pixels
- 2 clusters of 12 bad pixels
- single cluster with 15, 20, 24, 30, 34 and 51 bad pixels

The following image shows the bad pixel map estimated from data taken in Nice, 15. July, 2016.

Illustration 1: HAWAII-2RG bad pixel map, valid for a 100 kHz pixel clock (SCI-SLOW-SPEED)

3.3 HAWAII-2RG Detector characterization using the fast pixel clock

Doc.

Issue

Date

Page

A set of cold dark and flat field exposures was taken with the MATISSE_gen_cal_det_L_FAST OB (21.4.2017 in Nice). The associated MATISSE DRS plug-in *mat_cal_det* was used to calculate the bad pixel map, flat field map and nonlinearity map for the HAWAII-2RG detector at fast speed (2 MHz pixel clock). In addition some characteristic properties were calculated from the plug-in:

- Conversion factor: 2.60 e-/DU
- Readout noise: 53.5 e-
- Bad pixels: 13619 bad pixels of 2048x2048 pixels
- MINDIT: 0.0782393 s for the whole detector
- Full well capacity: 130000 e-
- Nonlinearity compensation: up to 100000 e- possible, max residual 1 %
- Dark current: 0.022 e-/s (data sheet), < 1 e-/s (estimated, includes stray light)
- Stray light: about 3200 s until stray light reaches RON²
- Masked area: left=80, right=80, bottom=30, top=40

The HAWAII-2RG detector shows 275 compact clusters of at least 3 bad pixels and three loose clusters of bad pixels:

- a large loose cluster at (294,1907), 32 pixel diameter, 244 bad pixels
- a large loose cluster at (327,1092), 26 pixel diameter, 178 bad pixels
- a large loose cluster at (1634,1224), 50 pixels diameter, 155 bad pixels
- 3449 clusters of 2 bad pixels
- 150 clusters of 3 bad pixels
- 76 cluster of 4 bad pixels
- 16 clusters of 5 bad pixels
- 6 clusters of 6 bad pixels
- 8 clusters of 7 bad pixels
- 7 clusters of 8 bad pixels
- 2 clusters of 9 bad pixels
- 2 clusters of 18 bad pixels
- single cluster with 11, 12, 19, 20, 24, 26, 32 and 52 bad pixels

The following image shows the bad pixel map estimated from data taken in Nice, 21. April, 2017.

Doc.

Issue

Date

Page

Illustration 2: HAWEAII-2RG bad pixel map, valid for a 2 MHz pixel clock (SCI-FAST-SPEED)

3.4 Aquarius Detector characterization using the low gain mode

- Conversion factor (12.27):
- Readout noise:
- Bad pixels:
- MINDIT:
- Full well capacity:
- Nonlinearity compensation:
- Dark current: (estimated, includes stray light)
 Masked area:

1800 e321 bad pixels of 1024x1024 pixels
50 μs, <10 ms for reading the whole detector
9000000 eup to 6000000 e- possible, max residual 1 %
200 e-/s @ 8.5 K (data sheet, no stray light), 13000 e-/s

left=32, right=32, bottom=32, top=31

It was not possible to calculate the conversion factor using the plug-in due to the ELFN which influences the measured temporal variance. Instead the conversion factor was calculated from the electronic amplification, electron charge, capacity of a pixel unit cell and ADC characteristics. The Aquarius detector shows 29 compact clusters of at least 3 bad pixels:

190 e-/DU

- 19 clusters of 2 bad pixels
- 6 clusters of 3 bad pixels
- 3 clusters of 4 bad pixels
- 2 clusters of 5 bad pixels
- 4 clusters of 6 bad pixels
- 3 clusters of 7 bad pixels
- 2 clusters of 9 bad pixels
- 2 clusters of 12 bad pixels
- 2 clusters of 17 bad pixels
- single cluster with 8, 10, 13, 26 and 36 bad pixels

The following image shows the bad pixel map estimated from data taken in Nice, 15. July, 2016.

Illustration 3: Aquarius bad pixel map, valid for low gain (SCI-LOW-GAIN)

The vertical stripes with many bad pixels are between the interferometric and photometric channels. Since these pixel are not well illuminated, additional bad pixels are found (false positives).

3.5 Aquarius detector characterization using the high gain mode

- Conversion factor(12.27):
- Readout noise:
- Bad pixels:
- MINDIT:
- Full well capacity:
- Nonlinearity compensation:
- Dark current: (estimated, includes stray light)
 Masked area:
- 200 e-/s @ 8.5 K (data sheet, no stray light), 13000 e-/s

50 μ s, <10 ms for reading the whole detector

up to 960000 e- possible, max residual 1 %

left=32, right=32, bottom=32, top=31

753 bad pixels if 1024x1024 pixels

The conversion factor was calculated using the detector properties directly (same reason as for the low gain mode).

20 e-/DU

>960000 e-

210 e-

The Aquarius detector shows 67 compact clusters of at least 3 bad pixels:

- 38 clusters of 2 bad pixels
- 24 clusters of 3 bad pixels
- 9 clusters of 4 bad pixels
- 9 clusters of 5 bad pixels
- 3 clusters of 6 bad pixels
- 4 clusters of 7 bad pixels
- 2 clusters of 8 bad pixels
- 2 clusters of 9 bad pixels
- 2 clusters of 13 bad pixels
- 2 clusters of 19 bad pixels
- 2 clusters of 26 bad pixels
- single cluster with 10, 12, 14, 15, 16, 17, 24 and 40 bad pixels

The following image shows the bad pixel map estimated from data taken in Nice, 21. April, 2017.

Illustration 4: Aquarius bad pixel map, valid for high gain (SCI-HIGH-GAIN)

The vertical stripes with many bad pixels are between the interferometric and photometric channels. Since these pixel are not well illuminated, additional bad pixels are found (false positives).

3.6 Remanence measurements

Test setup:

•

L	L-Band, HAWAII-2RG:				
0	OB:	MATISSE_gen_cal_imrem_L_FAST			
0	Readout mode:	SCI-FAST-SPEED (2 MHz pixel clock)			
0	Place and date:	Heidelberg, 16. October 2014			
0	TDELAY:	0 - 30 ms			
0	plug-in:	mat_im_rem			
N-Band, Aquarius:					
0	OB:	MATISSE_gen_cal_imrem_N_HIGH			
0	Readout mode:	SCI-HIGH-GAIN (high gain)			
0	Place and date:	Heidelberg, 15. April 2014			
0	TDELAY:	0 - 30 ms			
0	plug-in:	mat im rem			

The following plots show the calculated values.

Illustration 6: N-Band, Aquarius, Remanence

Mr.	MATISSE Inspection and Test	Doc. Issue Date	VLT-TRE-MAT-15860-9133 2.1 18.07.2017
MATISSE	Report Detector	Page	18 of 27

Test results:

•	HAWAII-2RG, fast shutter open \leftrightarrow closed (11.08)	10.2 ms
•	Aquarius, fast shutter open \leftrightarrow closed (11.08)	18 ms
•	HAWAII-2RG, time constant bright \leftrightarrow dark (12.24)	2 ms
•	Aquarius, time constant bright \leftrightarrow dark (12.25)	5 ms

For the HAWAII-2RG detector, a delay between two frames of 8 ms gives a remanence value of 2 %, for the Aquarius detector, a delay between two frames of 20 ms gives a remanence value of 2 %. A special readout timing for the Aquarius (realized as SCI-LOW-GAIN and SCI-HIGH-GAIN readout modes) allows that the time between two exposures is maximized (delay = frame time – read time). A slightly worse remanence value of 5 % can be achieved by waiting only three time constants. This will result in 6 ms delay for the HAWAII-2RG and 15 ms delay for the Aquarius detector.

3.7 Crosstalk between pixels

The crosstalk between pixels (spatial correlation) is determined by taking a series of flat field frames, calculate the median intensity for each pixel, subtract that from each frame and calculate the autocorrelation using a Fourier method.

Test results:

•	HAWAII-2RG, 2 MHz pixel clock	spatial=1.3 %, spectral=2.8 %
•	HAWAII-2RG, 2 MHz pixel clock	spatial=3.4 %, spectral=1.8 %
•	Aquarius, high gain mode	spatial=8.1 %, spectral=4.8 %

• Aquarius, low gain mode spatial=9.8 %, spectral=6.2 %

In 2015, a test was made until which readout speed the pixel-to-pixel correlation (spatial) for the HAWAII-2RG detector is inside the specification. The result of this test is shown in the following figure:

Illustration 7: Spatial correlation for the HAWAII-2RG detector depending on the pixel clock.

The HAWAII-2RG detector can be used up to 2 MHz pixel clock which is the default speed for the SCI-FAST-SPEED readout mode. It is possible to change the pixel clock with the DET.SEQ1.TIMEFAC keyword:

- The TIMEFAC keyword must have a value of 2 or greater!
- The time between two pixels is $0.1 \ \mu s * TIMEFAC$.
- The default value of 5 gives a pixel clock of 2 MHz.

The Aquarius detector is used with a pixel clock of 2.4 MHz. This will result in pixel crosstalk above specification. It is possible to use a lower pixel clock in order to reach the specification for the horizontal crosstalk:

M	MATISSE Inspection and Test Report Detector	Doc. Issue Date Page	VLT-TRE-MAT-15860-9133 2.1 18.07.2017 20 of 27
MATISSE	Report Detector	Tage	20 01 27

Aquarius, SCI-HIGH-GAIN, Spatial Pixel Correlation, Nice 20160711

Illustration 8: Aquarius pixel crosstalk, pixel clock dependency

It is possible to change the pixel clock with the DET.SEQ1.TIMEFAC keyword:

- The TIMEFAC must have a value of 8 or greater.
- The time between two pixels is 0.1 us + 0.04 us * TIMEFAC.
- The default value of 8 gives a pixel clock of 2.4 MHz.

A TIMEFAC value of at least 12 (1.7 MHz) will result in a horizontal crosstalk inside specification.

3.8 Temporal stability

The temporal stability describes the variations of the measured signal which are not readout or photon noise. These variations are characterized as Allan Variance or ELFN. The data were taken with the MATISSE_gen_cal_imext_L_FAST and MATISSE_gen_cal_imext_N_HIGH OB.

Test results:

- HAWAII-2RG, 2 MHz pixel clock
 - minimal Allan Variance at 100 seconds (darks)
 - minimal Allan Variance at 75 seconds (flats)
- Aquarius, high gain mode
 - minimal Allan Variance at 110 seconds (darks)
 - minimal Allan Variance at 50 seconds (flats)

3.9 Correlated noise

These noise measurements cover all external interference (noise from other electronic components). It is measured by taking long series of cold dark frames, calculate for each pixel a temporal power spectrum and average them. Peaks in this average power spectrum represent external noise.

Measurements from 15.7.2016 in Nice shows that no correlated noise do exist for the HAWAII-2RG detector at 2 MHz pixel clock. Neither for the fast (horizontal, 2 MHz pixel clock) nor for the slow direction (vertical, about 26 kHz).

Measurements from 28.11.2016 in Nice shows that no correlated noise do exist for the Aquarius detector. Neither for the fast (horizontal, about 2.4 MHz pixel clock) nor for the slow direction (vertical, about 75 kHz).

3.10 Stray light

The HAWAII-2RG shows a stray light intensity below 1 e-/s only if no spectral dispersion is used (INS.DOL = OPEN). If a spectral dispersion is used, the stray light level is even smaller.

The Aquarius detector shows stray light coming from the 36 K warm optics (14.11.2016):

Doc.

Issue

Date

Page

Illustration 9: Aquarius stray light coming from cold optics.

The image is the average of 32 frames with a DIT of 20 s. From such data with different DIT (20 ms, 20 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1 s, 2 s, 5 s, 10 s and 20 s), the following plot can be derived:

Illustration 10: Aquarius stray light depending from DIT.

This plot shows that with increasing DIT, an offset is introduced into the raw data (red curve) which is compensated for by subtracting the cold darks with the same DIT. If, for example, from the magenta colored curve the red curve is subtracted, this difference gives a stray light estimation for that region (24x120 pixels at (612, 800)). Therefore the stray light for the Aquarius, at this bright part, is about (830 - 180)*20 = 13000 e-/s.

3.11 Nonlinearity

The HAWAII-2RG detector shows an intensity (measured DU) dependent nonlinearity which is determined for each illuminated pixel. The measurements are made with DIT between 100 ms and 30 s for both readout speeds. For each pixel, the individual measurements are fitted with the function

$$I_{cal} = a * I_{raw} + b * e^{(I_{raw} - c) * d}$$

and the coefficients stored in a static nonlinearity map. In addition, the maximum intensity is estimated for which the function represents the measurements with a given accuracy. The next plot shows the nonlinearity function for three pixels. The data samples at about 50000 DU represents the maximum value in the data. This plot shows that the nonlinearity compensation does not include the individual pixel gain. This is covered by the static flatfield map.

Illustration 11: HAWAII-2RG, nonlinearity fit for three pixels at 2 MHz pixel clock

The Aquarius detector shows a flux (measured DU/s) dependent nonlinearity. This leads to static nonlinearity maps which are valid only for one specific DIT. The following plot shows the mapping from raw to calibrated values for different DIT, this mapping is used for all pixels:

Illustration 12: Aquarius nonlinearity for several DIT

3.12 Detector vibration

In Heidelberg, February 24., 2014, measurements with the Aquarius detector were made in order to estimate the vibration of the detector related to the rest of the instrument. Common mode vibrations cannot be detected by this kind of measurements. An instrument setup was selected which projects small slits on the detector:

Doc.

Issue

Date

Page

Illustration 13: Aquarius, slit for vibration measurements

On the left side of the slit image, the intensity goes from 0 to about 25000 DU. For each of these pixels, the median intensity and the temporal variance is calculated from a series of 2000 frames. If the image on the detector changes its position caused by vibrations, the calculated variance for each of the pixel will be higher than expected. On the left side of the slit, pixels show the following intensities and variances:

x position	intensity [DU]	variance [DU ²]	photon noise [DU ²]
180 - 189	0	0	0
190	-37	5	-2
191	290	13	14
192	542	46	27
193	1598	188	80
194	3467	620	173
195	6636	1334	332
196	10749	2612	537
197	15509	4792	775
198	19620	5143	981
199	22847	7592	1142
200	24575	5726	1229
201	25362	5464	1268
202 - 211	24823	6910	1241

Table 2: Aquarius vibration measurements at left edge of slit image

Near the center of the edge, a pixel shows an intensity of 15500 DU (marked with blue), the observed variance is 4800 DU^2 . From the measured intensity and a conversion factor of 20 e-/DU, the expected variance is 775 DU^2 .

Two sources for an additional variance do exist:

- 1. The variance will be higher than the photon noise due to ELFN.
- 2. The variance will be higher than the photon noise, if the image on the detector changes its position due to vibrations.

It is not possible to distinguish between these two effects using the instrument setup.

Doc.

Issue

Date

Page

Upper limits for the vibrations can be estimated under the assumption that a sinusoidal vibration is assumed and the effects of such a vibration for different frequencies and peak-to-valley values is compared with the measured variance:

Frequency	Jitter, peak-to-valley [µm]					
[Hz]	0.5	1.0	1.3	1.5	1.7	2.0
1	1388.3	3291.4	5033.4	6446.5	8068.8	108708
2	1375.7	3240.5	4956.4	6352.3	7949.1	10705.2
5	1382.4	3257.3	4995.1	6400.0	8002.1	10784.8
10	1376.6	3246.1	4970.7	6366.9	7972.2	10746.9
20	1368.3	3215.0	4910.5	6286.8	7864.8	10593.5
50	1303.1	2947.0	4482.0	5705.5	7129.8	9566.1
100	1116.6	2210.4	3224.5	4040.2	4982.1	6587.8

Table 3: Aquarius detector vibration limits (valid for a pixel intensity of 15000 DU)

This table shows that for frequencies below 100 Hz (the detection limit for the measurements), the jitter must be smaller than 1.7 μ m. Larger (sinusoidal) vibrations would lead to variances higher than measured. Due to the unknown ELFN component, the realistic vibration limit is even lower than 1.7 μ m.

The following plot shows the temporal power spectrum at the lower side of the slit (10 pixels with an average intensity of about 10000 DU) and the right side of the slit (3 pixels with an average intensity of about 10000 DU).

Illustration 14: Aquarius, vibration measurements via temporal power spectra

If the image position in the detector would change due to vibration, the pixels on the outer side of the slit would not only show a higher variance, but also a power spectrum showing peaks at some frequencies. A total erratic change of the image position is very unlikely.

Both power spectra do not show any obvious peaks but a higher than expected white noise plateau. The cause of this is the excess noise of the Aquarius detector which has a low frequency component (ELFN) and a white noise component. The white noise in the power spectrum is at about 2600 DU^2 . This number is equal with the variance measurements for a pixel at about 10000 DU (marked with green). Therefore no image position changes due to vibration can be detected.

APPENDIX: Abbreviations and Acronyms

This document employs several abbreviations and acronyms to refer concisely to an item, after it has been introduced. The following list is aimed to recall the extended meaning of each short expression:

AD	Applicable Document
AMO	Analysis Modules
ARC	Artificial Sources
BCD	Beam Commutating Device
CAU	Control and Alignment Unit
COB	Cold Optics Bench
COL	Collimating optics
CPL	Co-Phasing Unit – L band
CPN	Co-Phasing Unit – L band
CUL	Co-alignment Unit – L band
CUN	Co-alignment Unit – N band
DCS	Detector Control System
DET	DETector
DIT	Detector Integration Time
DRS	Data Reduction System
DU	Digital Unit
FI FN	Excess Low Frequency Noise
IRS	Infrared Source
MAIT	Manufacturing Alignment Integration and Tests
MAS	Mask
MATISSE	Multi-AperTure mid-Infrared SpectroScopic Experiment
MRI	Mirror Input
MRO	Mirror Output
MDD	MATISSE Dodinoss Doviou
	Observing Pleak
	Observatoire de la Cête d'Agur
ONI	ODServatorie de la Cole d'Azur
OML	OPD modulator – L band
OMN	Ord modulator – N band
OPD	Optical Path Difference
OPL	Optical Path Length
PAE	Preliminary Acceptance Europe
PAO	Photometry Anamorphic Optics
PMR	Primary Mirror
PSF	Point Spread Function
PUC	Pupil Creator
PV	Peak To Valley
QE	Quantum Efficiency
RD	Reference Document
RMS	Root Mean Square
RON	Read Out Noise
SMR	Secondary mirror
SOA	Source Analysis
SOS	Source Selector
SR	Strehl Ratio
TBC	To Be Clarified
VAS	Visible Alignment Source
VLT	Very Large Telescope
WFA	Wavefront Analyzer
WFE	Wavefront Error
WOP	Warm Optics

End of document